Powers of Hamilton Cycles in Pseudorandom Graphs

نویسندگان

  • Peter Allen
  • Julia Böttcher
  • Hiêp Hàn
  • Yoshiharu Kohayakawa
  • Yury Person
چکیده

We study the appearance of powers of Hamilton cycles in pseudorandom graphs, using the following comparatively weak pseudorandomness notion. A graph G is (ε, p, k, l)-pseudorandom if for all disjoint X and Y ⊆ V (G) with |X| ≥ εpkn and |Y | ≥ εpln we have e(X,Y ) = (1± ε)p|X||Y |. We prove that for all β > 0 there is an ε > 0 such that an (ε, p, 1, 2)-pseudorandom graph on n vertices with minimum degree at least βpn contains the square of a Hamilton cycle. In particular, this implies that (n, d, λ)-graphs with λ ≪ d5/2n−3/2 contain the square of a Hamilton cycle, and thus a triangle factor if n is a multiple of 3. This improves on a result of Krivelevich, Sudakov and Szabó [Triangle factors in sparse pseudo-random graphs, Combinatorica 24 (2004), no. 3, 403–426]. We also extend our result to higher powers of Hamilton cycles and establish corresponding counting versions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On covering expander graphs by hamilton cycles

The problem of packing Hamilton cycles in random and pseudorandom graphs has been studied extensively. In this paper, we look at the dual question of covering all edges of a graph by Hamilton cycles and prove that if a graph with maximum degree ∆ satisfies some basic expansion properties and contains a family of (1−o(1))∆/2 edge disjoint Hamilton cycles, then there also exists a covering of its...

متن کامل

Optimal covers with Hamilton cycles in random graphs

A packing of a graph G with Hamilton cycles is a set of edgedisjoint Hamilton cycles in G. Such packings have been studied intensively and recent results imply that a largest packing of Hamilton cycles in Gn,p a.a.s. has size bδ(Gn,p)/2c. Glebov, Krivelevich and Szabó recently initiated research on the ‘dual’ problem, where one asks for a set of Hamilton cycles covering all edges of G. Our main...

متن کامل

Sparse pseudo-random graphs are Hamiltonian

In this article we study Hamilton cycles in sparse pseudorandom graphs. We prove that if the second largest absolute value of an eigenvalue of a d-regular graph G on n vertices satisfies

متن کامل

Powers of cycles, powers of paths, and distance graphs

In 1988, Golumbic and Hammer characterized powers of cycles, relating them to circular-arc graphs. We extend their results and propose several further structural characterizations for both powers of cycles and powers of paths. The characterizations lead to linear-time recognition algorithms of these classes of graphs. Furthermore, as a generalization of powers of cycles, powers of paths, and ev...

متن کامل

On the Number of Hamilton Cycles in Bounded Degree Graphs

The main contribution of this paper is a new approach for enumerating Hamilton cycles in bounded degree graphs – deriving thereby extremal bounds. We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O(1.276), improving on Eppstein’s previous bound. The resulting new upper bound of O(1.276) for the maximum number of Hamilton cycles in 3-regul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014